1,611 research outputs found

    Pyrolysis of Dried Wastewater Biosolids Can Be Energy Positive

    Get PDF
    Pyrolysis is a thermal process that converts biosolids into biochar (a soil amendment), py-oil and py-gas, which can be energy sources. The objectives of this research were to determine the product yield of dried biosolids during pyrolysis and the energy requirements of pyrolysis. Bench-scale experiments revealed that temperature increases up to 500 °C substantially decreased the fraction of biochar and increased the fraction of py-oil. Py-gas yield increased above 500 °C. The energy required for pyrolysis was approximately 5-fold less than the energy required to dry biosolids (depending on biosolids moisture content), indicating that, if a utility already uses energy to dry biosolids, then pyrolysis does not require a substantial amount of energy. However, if a utility produces wet biosolids, then implementing pyrolysis may be costly because of the energy required to dry the biosolids. The energy content of py-gas and py-oil was always greater than the energy required for pyrolysis

    Carleman estimates and absence of embedded eigenvalues

    Full text link
    Let L be a Schroedinger operator with potential W in L^{(n+1)/2}. We prove that there is no embedded eigenvalue. The main tool is an Lp Carleman type estimate, which builds on delicate dispersive estimates established in a previous paper. The arguments extend to variable coefficient operators with long range potentials and with gradient potentials.Comment: 26 page

    In Vivo Evolution of Butane Oxidation by Terminal Alkane Hydroxylases AlkB and CYP153A6

    Get PDF
    Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47{Delta}B) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts

    The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules

    Get PDF
    Background: Regulation of sulphur metabolism in Corynebacterium glutamicum ATCC 13032 has been studied intensively in the last few years, due to its industrial as well as scientific importance. Previously, the gene cg0156 was shown to belong to the regulon of McbR, a global transcriptional repressor of sulphur metabolism in C. glutamicum. This gene encodes a putative ROK-type regulator, a paralogue of the activator of sulphonate utilisation, SsuR. Therefore, it is an interesting candidate for study to further the understanding of the regulation of sulphur metabolism in C. glutamicum. Results: Deletion of cg0156, now designated cysR, results in the inability of the mutant to utilise sulphate and aliphatic sulphonates. DNA microarray hybridisations revealed 49 genes with significantly increased and 48 with decreased transcript levels in presence of the native CysR compared to a cysR deletion mutant. Among the genes positively controlled by CysR were the gene cluster involved in sulphate reduction, fpr2 cysIXHDNYZ, and ssuR. Gel retardation experiments demonstrated that binding of CysR to DNA depends in vitro on the presence of either O-acetyl-L-serine or O-acetyl-L-homoserine. Mapping of the transcription start points of five transcription units helped to identify a 10 bp inverted repeat as the possible CysR binding site. Subsequent in vivo tests proved this motif to be necessary for CysR-dependent transcriptional regulation. Conclusion: CysR acts as the functional analogue of the unrelated LysR-type regulator CysB from Escherichia coli, controlling sulphide production in response to acceptor availability. In both bacteria, gene duplication events seem to have taken place which resulted in the evolution of dedicated regulators for the control of sulphonate utilisation. The striking convergent evolution of network topology indicates the strong selective pressure to control the metabolism of the essential but often toxic sulphur-containing (bio-)molecules

    Living in Peace: Host-Microbiota Mutualism in the Skin

    Get PDF
    Commensal microbes colonize the skin where they promote immune development and prevent infection without inducing damaging inflammatory responses. In this issue of Cell Host & Microbe, Scharschmidt et al. (2017) show that during hair follicle development, commensals induce regulatory T cell migration to the skin to ensure cutaneous homeostasis

    The 3D abstract Tile Assembly Model is Intrinsically Universal

    Get PDF
    In this paper, we prove that the three-dimensional abstract Tile Assembly Model (3DaTAM) is intrinsically universal. This means that there is a universal tile set in the 3DaTAM which can be used to simulate any 3DaTAM system. This result adds to a body of work on the intrinsic universality of models of self-assembly, and is specifically motivated by a result in FOCS 2016 showing that any intrinsically universal tile set for the 2DaTAM requires nondeterminism (i.e. undirectedness) even when simulating directed systems. To prove our result we have not only designed, but also fully implemented what we believe to be the first intrinsically universal tile set which has been implemented and simulated in any tile assembly model, and have made it and a simulator which can display it freely available

    Towards Functional Flows for Hierarchical Models

    Get PDF
    The recursion relations of hierarchical models are studied and contrasted with functional renormalisation group equations in corresponding approximations. The formalisms are compared quantitatively for the Ising universality class, where the spectrum of universal eigenvalues at criticality is studied. A significant correlation amongst scaling exponents is pointed out and analysed in view of an underlying optimisation. Functional flows are provided which match with high accuracy all known scaling exponents from Dyson's hierarchical model for discrete block-spin transformations. Implications of the results are discussed.Comment: 17 pages, 4 figures; wording sharpened, typos removed, reference added; to appear with PR

    Ubiquitous Computing. Summary

    Get PDF
    Ubiquitous computing - the complex electronic networking of things that communicate - is considered a promising innovation path worldwide. Intensive R&D activities and political strategies are aimed at promoting practical technologies and applications. Where do we currently stand on the path to the "Internet of Things"? Which practical projects already show the potential that can be exploited by implementing the basic idea of ubiquitous computing? What technical, legal and social challenges must be overcome to achieve this - and what can be the contribution of politics? In the light of these questions, the authors analyse the status quo and the perspectives of ubiquitous computing and illustrate their findings with examples from trade, logistics and health care, among others. the fascinating "Brownie technology" of ubiquitous computing must, however, still be comprehensively made fit by those involved in business, society and politics if its applications are really to become economically attractive, socially acceptable and helpful in overcoming social problems

    Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction

    Get PDF
    BACKGROUND: Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. RESULTS: The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of the extended cluster are conserved in 11 of 17 completely sequenced members of the Actinomycetales. CONCLUSION: The set of C. glutamicum genes involved in assimilatory sulphate reduction was identified and four novel genes involved in this pathway were found. The high degree of conservation of this cluster among the Actinomycetales supports the hypothesis that a different metabolic pathway for the reduction of inorganic sulphur compounds than that known from the well-studied model organisms E. coli and B. subtilis is used by members of this order, providing the basis for further biochemical studies

    Tug-of-war in motility assay experiments

    Full text link
    The dynamics of two groups of molecular motors pulling in opposite directions on a rigid filament is studied theoretically. To this end we first consider the behavior of one set of motors pulling in a single direction against an external force using a new mean-field approach. Based on these results we analyze a similar setup with two sets of motors pulling in opposite directions in a tug-of-war in the presence of an external force. In both cases we find that the interplay of fluid friction and protein friction leads to a complex phase diagram where the force-velocity relations can exhibit regions of bistability and spontaneous symmetry breaking. Finally, motivated by recent work, we turn to the case of motility assay experiments where motors bound to a surface push on a bundle of filaments. We find that, depending on the absence or the presence of a bistability in the force-velocity curve at zero force, the bundle exhibits anomalous or biased diffusion on long-time and large-length scales
    • …
    corecore